A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress.
نویسندگان
چکیده
A gene encoding a product with substantial similarity to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was identified in the preliminary genome sequence of the green sulfur bacterium Chlorobium tepidum. A highly similar gene was subsequently isolated and sequenced from Chlorobium limicola f.sp. thiosulfatophilum strain Tassajara. Analysis of these amino acid sequences indicated that they lacked several conserved RubisCO active site residues. The Chlorobium RubisCO-like proteins are most closely related to deduced sequences in Bacillus subtilis and Archaeoglobus fulgidus, which also lack some typical RubisCO active site residues. When the C. tepidum gene encoding the RubisCO-like protein was disrupted, the resulting mutant strain displayed a pleiotropic phenotype with defects in photopigment content, photoautotrophic growth and carbon fixation rates, and sulfur metabolism. Most important, the mutant strain showed substantially enhanced accumulation of two oxidative stress proteins. These results indicated that the C. tepidum RubisCO-like protein might be involved in oxidative stress responses and/or sulfur metabolism. This protein might be an evolutional link to bona fide RubisCO and could serve as an important tool to analyze how the RubisCO active site developed.
منابع مشابه
Crystal structure of a RuBisCO-like protein from the green sulfur bacterium Chlorobium tepidum.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the incorporation of atmospheric CO(2) into ribulose 1,5-bisphosphate (RuBP). RuBisCOs are classified into four forms based on sequence similarity: forms I, II and III are bona fide RuBisCOs; form IV, also called the RuBisCO-like protein (RLP), lacks several of the substrate binding and catalytic residues and does not catalyze ...
متن کاملS-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition.
Nitric oxide (NO) is a signaling molecule that affects a myriad of processes in plants. However, the mechanistic details are limited. NO post-translationally modifies proteins by S-nitrosylation of cysteines. The soluble S-nitrosoproteome of a medicinal, crassulacean acid metabolism (CAM) plant, Kalanchoe pinnata, was purified using the biotin switch technique. Nineteen targets were identified ...
متن کاملRibulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase.
The rate of CO(2) fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were ...
متن کاملRoles of RubisCO and the RubisCO-like protein in 5-methylthioadenosine metabolism in the Nonsulfur purple bacterium Rhodospirillum rubrum.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the assimilation of atmospheric CO(2) into organic matter and is thus central to the existence of life on earth. The beginning of the 2000s was marked by the discovery of a new family of proteins, the RubisCO-like proteins (RLPs), which are structural homologs of RubisCO. RLPs are unable to catalyze CO(2) fixation. The RLPs fro...
متن کاملA RubisCO like protein links SAM metabolism with isoprenoid biosynthesis
Functional assignment of uncharacterized proteins is a challenge in the era of large-scale genome sequencing. Here, we combine in extracto NMR, proteomics and transcriptomics with a newly developed (knock-out) metabolomics platform to determine a potential physiological role for a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Rhodospirillum rubrum. Our studies unra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 8 شماره
صفحات -
تاریخ انتشار 2001